Prosody can help distinguish identical twins: implications for forensic speaker comparison

Eugenia San Segundo¹, Lei He² and Volker Dellwo²

¹ Department of Language & Linguistic Science, University of York, UK
² Institute of Computational Linguistics, University of Zurich, Switzerland

BACKGROUND & OBJECTIVE

- **Background:** Voice similarity of identical twins attracts the attention of forensic specialists (also in forensic studies):
 - Why? widely assumed that twins’ voices are very similar → especially difficult recognition (e.g. [1])
 - However: hardy comparable results across studies
 - because of different number of speakers, speaking style and forensic comparison methods
 - so, how to assess the relative importance of different systems or the value of a set of acoustic features over others?
- **Some exceptions:** Twin Corpus [2] (highest t(68)=2.16); some twin pairs and speaking style (see Materials & Method)
- **but still different comparison methods/system output**

MATERIALS & METHOD

- **Subjects:** 24 speakers from the Twin Corpus collected by ESS [2]
 - 12 monophonic (MZ) twin pairs
 - male; aged 20-36
 - native speakers of Standard Peninsular Spanish
- **Task:**
 - participant - researcher spontaneous conversations
 - over the phone (~10min)
- **Speech material:**
 - 2 mins min speech * 24 speakers
 - Inter-Pause (IP) stretches per speaker: 31 (mean); 6 (SD)
- **Corpus annotation:**
 - Manual transcription
 - Semi-automatic alignment and segmentation at the phonetic and syllable level using EasyAlign

RESULTS

- **PCA analysis:**
 - 8 components extracted
 - 1st variable selected per component (highest loadings):
 - ΔV · varcoC · nC · meanCLn · ΔSylLn · varcoP · nPVI-C · nPVI-V
- **Dissimilarity measures (ED) and significance tests (t test)**

Statistical analysis:

1. **Principal Component Analysis (PCA)**
 - In order to reduce the number of variables
 - Rotation method: Varimax with Kaiser normalization
2. **Dissimilarity measures and significance tests**
 - Following method described in [8] for twin speaker comparisons
 - Both analyses based on only 8 measures after PCA:
 a) **Euclidean distances**
 - based on the 8 prosodic measures together
 - z-score normalized & rescaled to 0-1 range
 - lower values indicate ‘more similar’ → higher values indicate ‘more different’
 b) **Independent t-tests**
 - based on the separate prosodic measures - two-tailed tests with Bonferroni correction

Discussion

- Overview, we observed variation in the temporal patterns exhibited by twin pairs. As highlighted by the ED, very few twin pairs are really similar (twin pairs 06 and 12) when considering the 8 prosodic characteristics.
- Upon further examination, t-tests revealed which features contribute the most to distinguish between twins.
- Interestingly, both intensity and duration measures allow twin differentiation - depending on the pair.
- The finding that varcoP can distinguish twin pair 04 is particularly relevant, as these speakers were misidentified by the MFCC-based ASR system. The system based on glottal source features gave LIR = 0 (no decision). (See Table 1)

CONCLUSIONS

- Rhythmic variability exists even between extremely similar speakers (i.e. identical twins).
- Prosody offers idiogenic information, possibly complementary to that provided by forensic systems based on vocal tract and glottal characteristics.
- Some of the investigated measures proved useful to tell certain twins apart where other systems had failed to distinguish them (see Table 1).
- Future hybrid approaches should consider adding prosodic measures for a better characterization of speakers and hence for more reliable forensic comparison systems.
- In terms of methods, PCA seems a good method for dimension reduction, especially with highly correlated measures.

- **Limitations:**
 - The method used to investigate how similar/different twin pairs are follows previous studies on twins [8] but differ from common forensic approaches / output (e.g. EER, LLRs).
- **Future work:**
 - Calculate weighted Euclidean distances.
 - Explore different ways to combine the output provided by several forensic comparison systems.
 - Take into account typological aspects from similarity measures.

REFERENCES

ACKNOWLEDGEMENTS

Thanks to Sandra Schwaab for help with the corpus alignment tool. This investigation has been possible thanks to an International Short Visit of the Swiss National Science Foundation (SNF).