Developing the vocal profile analysis scheme for forensic voice comparison

Eugenia San Segundo, Vincent Hughes, Peter French, Paul Foulkes & Philip Harrison

University of York & J P French Associates
Forensic Voice Comparison (FVC)

– **what:** analyse the speech of unknown offender and known suspect

– **why:** aid the court in determining whether voices belong to the same or different speakers

– **how:** auditory phonetic *cum* acoustic phonetic analysis (Europe)
1. Introduction

• survey of practitioners (Gold & French 2011)
 – **voice quality (VQ)**: one of most valuable features

 • 94% examine VQ
 • 68% of those do so ‘routinely’

 • 61% use recognised framework
 • 21% perform “auditory analysis and provide some form of a verbal description” (i.e. not following pre-established scheme)
Vocal Profile Analysis

- framework for systematic description of VQ
 - developed by Laver et al. (1981)
- modified by Beck (2007)
 - 25 supralaryngeal
 - 7 laryngeal
- comparison against ‘neutral setting’
 - clearly defined baseline with concrete acoustic and physiological correlates
1. Introduction

• Nolan (2005): first systematic discussion application of VQ analysis to FVC

issues with VPA for FVC

– some dimensions never used in forensic analysis (redundancy)
– forensic analysis needs to be based on independent features (avoid doubling evidence)
– difficult to quantify
– courts need to know reliability of the method (perception of subjectivity)
1. Introduction

research questions

1. what changes might we make to improve the usability of VPA for FVC?
2. how reliable are VPA scores across different analysts?
3. to what extent is a speaker’s profile variable across recordings and how useful is VPA for speaker discrimination?
2. Methods

- **DyViS** (Nolan et al. 2009)
 - 100 male speakers
 - Standard Southern British English (SSBE)
 - 18-25 years old

Task 1
mock police interview
HQ, studio recording
(c. 20 mins)

Task 2
information exchange over telephone
HQ, near-end recording
(c. 10-15 mins)
3.1 VPA protocol

simplified version

- reduced scalar degrees
 - ‘present’ features (1-3)
- reduced N settings
 - mergers:
 - fronted + raised
 - backed + lowered
 - creak + creaky
 - deletion:
 - audible nasal escape
 - protruded jaw
3.1 VPA protocol

potential future simplifications

• further reduction of supralaryngeal settings:
 – extensive {mandibular | lingual | labial} range
 → tense vocal tract

• correlations between settings (e.g. lowered larynx ~ pharyngeal expansion)
 – sources of correlation (physiological, socioling...)

• dealing with polar opposites

lip rounding lip spreading
3.2. Interrater measures

pilot experiment:
- 10 speakers randomly selected from Task 2
- 4 raters (blind perceptual analysis using SVPA)
- results based on absolute agreement

results
- high *percentage agreement* for most settings
 - only exceptionally < 70% (e.g. *fronted tongue body*)
- fair-moderate agreement with *Cohen’s kappa*
 - $\kappa > 0.80$ (*pharyngeal expansion, harshness*)
3.2. Interrater measures

- Precalibration

- **% Agreement**

- **Cohen's kappa**

- Good agreement for most settings
- Some exceptions (% < 0.70)
 - close jaw
 - extensive mand./lingual range
 - fronted tongue body
 - lax larynx
- But results not chance corrected!

- Very good agreement (κ > 0.80):
 - pharyngeal expansion
 - harshness
 - tense vocal tract
- Need to work on the rest of settings
- Problem with ‘invariant values’:
 - All coders attain 100% agreement
 - Only use one variable value
3.2. Interrater measures

calibration procedure:

• joint listening
• redefining certain labels
• discussing the idea of ‘neutral’ voice as baseline for this population
• adjustment of the individual use of scalar degrees
3.2. Interrater measures
post-calibration interrater results

*REMEMBER
Based on absolute agreement (same scalar degrees)!

- overall good agreement (80 – 100%) for most supralaryngal settings
- moderate agreement (< 60%) in phonatory settings (esp. breathy)
- Cohen’s kappa confirms general patterns
 - but issues with use for invariant values
- exceptions to good agreement: e.g. fronted tongue body & nasal
3.2. Interrater measures

• more realistic definition of agreement/disagreement:
 – disagreement about presence/absence (0-1)
 – disagreement beyond 1 scalar degree

<table>
<thead>
<tr>
<th></th>
<th>% agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS ~ PE</td>
<td>88.1%</td>
</tr>
<tr>
<td>ESS ~ PA</td>
<td>87.3%</td>
</tr>
<tr>
<td>PA ~ PE</td>
<td>88.4%</td>
</tr>
<tr>
<td>mean</td>
<td>87.9%</td>
</tr>
</tbody>
</table>
3.3 Speaker discrimination

TASK 1

Speaker 1

Speaker 2

etc.
3.3 Speaker discrimination

\[
\frac{p(ED|\lambda_{SS})}{p(ED|\lambda_{DS})} = \frac{0.515}{0.183} = 2.814
\]

- performance measured using \(C_{llr} \)
 - magnitude of errors
 - \(< 1\) is good
3.3 Speaker discrimination

best results: binary data

<table>
<thead>
<tr>
<th>settings</th>
<th>C_{llr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.6509</td>
</tr>
<tr>
<td>Supralaryngeal</td>
<td>0.7137</td>
</tr>
<tr>
<td>Laryngeal</td>
<td>0.9984</td>
</tr>
</tbody>
</table>

![Graph showing cumulative proportion vs. log likelihood ratio](image-url)
4. Discussion: modifications

- first attempt at simplifying scheme
- issues with perceptual assessment of VQ
 - voice = highly multidimensional
 - difficulty isolating individual settings
 - reducing dimensionality/maintaining value
- scope for further dimension reduction:
 - may be able to use interrater results
4. Discussion: **interrater**

- overall % agreement = good
 - some settings easier to agree upon? more salient?
 - *labiodentalisation* or *harshness* also high % agreement in previous studies (Beck 2005: 100% and 84% respectively)

- lower % agreement results may have simple explanations and solutions:
 - *nasal-denasal* co-occur → raters tick one label?
 - *breathy-whisper* → no clear perceptual boundary
4. Discussion: sp discrimination

• weak strength of evidence
 – small sample size
 – cross-validation
 – no calibration
 – issue with representation (quantification)
 • distances not weighted by auditorily marked features
 • averaging over settings
 • massive redundancy
5. Conclusion

• simplified VPA for forensic purposes
 – further modifications based on:
 • correlations/interrater results/speaker discrimination...

• overall good interrater agreement
 – systematic patterns (individuals/listening strategies)
 – other statistical measures

• promising speaker discriminatory value
 – more appropriate ways of quantifying VPA
 – optimising discriminatory value
Thanks! Questions?