# The vocal tract as a biometric: output measures, interrelationships, and efficacy

## Peter French, Paul Foulkes, Philip Harrison, Vincent Hughes, Eugenia San Segundo & Louisa Stevens


### University of York & J P French Associates

#### **Discussant Session:**

Forensic phonetics and speaker characteristics









- forensic voice comparison (FVC)
  - 400-500 cases per year in UK

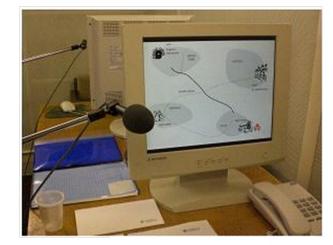
## • Voice and Identity: source, filter, biometric

- best way to discriminate between speakers
- best variables
- best method(s): phonetic, acoustic, ASR...
- **starting point:** vocal tract output (VTO) measures
  - vocal tract as a biometric

VTO measures

- vocal profile analysis (VPA; Laver et al. 1981)
  - auditory analysis
  - 27 supralaryngeal features
- long-term formant distributions (LTFDs)
  - global analysis of formant distributions across a sample
  - information about vowel system and space
- mel-frequency cepstral coefficients (MFCCs)
  - *global* variables extracted from across a sample
  - developed in ASR

## aims


- investigate the interrelationships between these supralaryngeal VTO measures
- investigate the relative discriminant power and limitations of the three methods



## **2. Data and Methods**

# 2.1 Corpus

- DyViS (Nolan et al. 2009)
  - 100 male speakers
  - Standard Southern British English (RP)
  - 18-25 years old
- Task 2 studio (near-end) recordings
  - information exchange task over telephone
  - 44.1kHz/ 16-bit depth audio
  - 10-15 minutes in duration
  - manually edited (silences removed, 4 min samples...)





# 2.2 Method

- extraction of data for the three measures
- for each measure:
- (a) distances (degree of divergence) between each pair of voice samples
- (a) identification (speaker discrimination) score for each pair of same speaker (SS) and different speaker (DS) samples

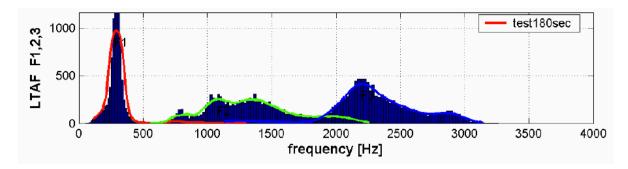
VOCAL PROFILE ANALYSIS PROTOCOL

Speaker: ...... Date of recording: ...... Judge: ..... Recording ID: .....

# 2.3 VPA analysis

- in-house version of VPA scheme
  - 7 scalar degrees (0  $\rightarrow$  6)
  - 27 supralaryngeal features

## (a) speaker distances


- Euclidean distances between speaker pairs

## (b) identification score

- currently one data set per speaker (i.e. no SS comparisons)
- close match = speakers with VPA profiles differing by ≤ 2 scalar degrees

|                                  | FIRST PASS |             | SECOND PASS             |  |          |   |         | _ |   |
|----------------------------------|------------|-------------|-------------------------|--|----------|---|---------|---|---|
|                                  |            |             | SETTING                 |  | moderate |   | extreme |   |   |
|                                  | Neutral    | Non-neutral |                         |  | 2        | 3 | 4       | 5 |   |
| A. VOCAL TRAC                    | T FEATU    | RES         |                         |  |          |   |         |   |   |
|                                  |            |             | Lip rounding/protrusion |  |          |   |         |   |   |
| <ol> <li>Labial</li> </ol>       |            |             | Lip spreading           |  |          |   |         |   | L |
|                                  |            |             | Labiodentalization      |  |          |   |         |   | L |
|                                  |            |             | Extensive range         |  |          |   |         |   |   |
|                                  |            |             | Minimised range         |  |          |   |         |   | Γ |
|                                  |            |             | Close jaw               |  |          |   |         |   | _ |
| <ol><li>Mandibular</li></ol>     |            |             | Open jaw                |  |          |   |         |   |   |
|                                  |            |             | Protruded jaw           |  |          |   |         |   | ſ |
|                                  |            |             | Extensive range         |  |          |   |         |   | Γ |
|                                  |            |             | Minimised range         |  |          |   |         |   | Г |
| 3. Lingual                       |            |             | Advanced tip/blade      |  |          |   |         |   |   |
| tip/blade                        |            |             | Retracted tip/blade     |  |          |   |         |   | Γ |
|                                  |            |             | Fronted tongue body     |  |          |   |         |   | T |
| <ol><li>Lingual body</li></ol>   |            |             | Backed tongue body      |  |          |   |         |   | T |
|                                  |            |             | Raised tongue body      |  |          |   |         |   | t |
|                                  |            |             | Lowered tongue body     |  |          |   |         |   | T |
|                                  |            |             | Extensive range         |  |          |   |         |   | T |
|                                  |            |             | Minimised range         |  |          |   |         |   | t |
| 5. Pharyngeal                    |            |             | Pharyngeal constriction |  |          |   |         |   | t |
|                                  |            |             | Pharyngeal expansion    |  |          |   |         |   | t |
|                                  |            |             | Audible nasal escape    |  |          |   |         |   | t |
| <ol><li>Velopharyngeal</li></ol> |            |             | Nasal                   |  |          |   |         |   | t |
|                                  |            |             | Denasal                 |  |          |   |         |   | t |
| 7. Larynx height                 |            |             | Raised larynx           |  |          |   |         |   | t |
|                                  |            |             | Lowered larynx          |  |          |   |         |   | Γ |
| B. OVERALL MU                    | SCULAR     | TENSION     |                         |  |          |   |         |   | ŕ |
| 8. Vocal tract                   |            |             | Tense vocal tract       |  |          |   |         |   | Г |
| tension                          |            |             | Lax vocal tract         |  |          |   |         |   | t |
| 9. Laryngeal                     |            |             | Tense larynx            |  | 1        |   |         |   | t |
| tension                          |            |             | Lax larynx              |  | +        |   |         |   | t |
|                                  | I          |             | and day in              |  |          | - | -       |   | 1 |

# 2.4 LTFDs

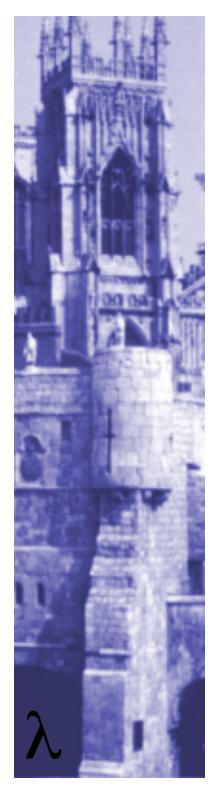


- automatic separation into C and V (StkCV)
  - $\rightarrow$  vowel-only samples:
  - 25ms Gaussian window shifted at 5ms
  - − F1→F4 extracted from each frame using iCAbS tracker (Harrison & Clermont 2012)

## (a) speaker distances

- LTFDs modelled as GMM (8 Gaussians)
- Kullback-Leibler (KL) divergence: distance between models
- (b) identification score
  - GMM-UBM: SS (100) & DS (4900) log LRs

# **2.5 MFCCs**


- data extraction and analysis: BATVOX (v4)
  - 20ms hamming window shifted at 10ms intervals
  - 20 MFCCs/ deltas/ delta-deltas per frame

## (a) speaker distances

- MFCCs modelled as GMM (1024 Gaussians)
- KL divergence: distance between models

## (b) identification score

- BATVOX identification mode: SS (100) & DS (4900) log LRs



## **3. Results**

# 3.1 Correlations: global

• correlations between VTO distance scores:

| Comparison      | r    | p     |
|-----------------|------|-------|
| LTFDs vs. MFCCs | 0.49 | <0.01 |
| LTFDs vs. VPA   | 0.12 | <0.01 |
| MFCCs vs. VPA   | 0.17 | <0.01 |

 but... global scores might conceal stronger correlations between sub-components

# **3.1 Correlations:** formants vs. MFCCs/VPA distances

| Comparison  | MFCC: |        | VPA: |       |
|-------------|-------|--------|------|-------|
|             | r     | p      | r    | p     |
| F1+F2+F3+F4 | 0.49  | <0.01  | 0.12 | <0.01 |
| F1          | 0.27  | < 0.01 | 0.03 | <0.05 |
| F2          | 0.30  | <0.01  | 0.07 | <0.01 |
| F3          | 0.44  | <0.01  | 0.06 | <0.01 |
| F4          | 0.13  | <0.01  | 0.13 | <0.01 |

## **3.1 Correlations:** formants vs. VPA features

- by-speaker means calculated for LTFD1 $\rightarrow$ 4
- Spearman correlation matrix generated for LTFDs and raw VPA scores

# **3.1 Correlations:** formants vs. VPA features

#### LTFD 1

| <ul> <li>backed tongue body</li> </ul>      | rho = 0.200   | <i>p</i> = 0.045  | *   |
|---------------------------------------------|---------------|-------------------|-----|
| <ul> <li>pharyngeal constriction</li> </ul> | rho = 0.298   | <i>p</i> = 0.003  | **  |
| <ul> <li>pharyngeal expansion</li> </ul>    | rho = -0.213  | <i>p</i> = 0.034  | *   |
| <ul> <li>raised larynx</li> </ul>           | rho = 0.397   | <i>p</i> < 0.0001 | *** |
| <ul> <li>lowered larynx</li> </ul>          | rho = -0.248  | <i>p</i> = 0.013  | *   |
| LTFD 2                                      |               |                   |     |
| <ul> <li>fronted tongue body</li> </ul>     | rho = 0.239   | <i>p</i> = 0.016  | *   |
| <ul> <li>lowered larynx</li> </ul>          | rho = -0.257  | <i>p</i> = 0.0097 | **  |
| <ul> <li>lax vocal tract</li> </ul>         | rho = -0.197  | <i>p</i> = 0.049  | *   |
| LTFD 3                                      |               |                   |     |
| tense vocal tract rho                       | p = 0.242 p = | 0.041 *           |     |
| LTFD 4                                      |               |                   |     |
| <ul> <li>pharyngeal constriction</li> </ul> | rho = -0.220  | <i>p</i> = 0.028  | *   |
| <ul> <li>raised larynx</li> </ul>           | rho = -0.385  | <i>p</i> < 0.0001 | *** |

|                  | MFCC | LTFD | VPA<br>(exact) | VPA<br>(close) |
|------------------|------|------|----------------|----------------|
| True rejection   | 97.1 | 97.4 | 99.5           | 87.9           |
| True acceptance  | 100  | 94   | -              | -              |
| False acceptance | 2.9  | 2.6  | 0.5            | 12.1           |
| False rejection  | 0    | 6    | -              | -              |

|                  | MFCC | LTFD | VPA<br>(exact) | VPA<br>(close) |
|------------------|------|------|----------------|----------------|
| True rejection   | 97.1 | 97.4 | 99.5           | 87.9           |
| True acceptance  | 100  | 94   | -              | -              |
| False acceptance | 2.9  | 2.6  | 0.5            | 12.1           |
| False rejection  | 0    | 6    | -              | -              |

|                  | MFCC | LTFD | VPA<br>(exact) | VPA<br>(close) |
|------------------|------|------|----------------|----------------|
| True rejection   | 97.1 | 97.4 | 99.5           | 87.9           |
| True acceptance  | 100  | 94   | -              | -              |
| False acceptance | 2.9  | 2.6  | 0.5            | 12.1           |
| False rejection  | 0    | 6    | -              | -              |

|                  | MFCC | LTFD | VPA<br>(exact) | VPA<br>(close) |
|------------------|------|------|----------------|----------------|
| True rejection   | 97.1 | 97.4 | 99.5           | 87.9           |
| True acceptance  | 100  | 94   | -              | -              |
| False acceptance | 2.9  | 2.6  | 0.5            | 12.1           |
| False rejection  | 0    | 6    | _              | -              |

|                  | MFCC | LTFD | VPA<br>(exact) | VPA<br>(close) |
|------------------|------|------|----------------|----------------|
| True rejection   | 97.1 | 97.4 | 99.5           | 87.9           |
| True acceptance  | 100  | 94   | -              | -              |
| False acceptance | 2.9  | 2.6  | 0.5            | 12.1           |
| False rejection  | 0    | 6    | _              | -              |



## 4. Discussion and conclusion

# **4.1 Discussion**

- strong correlations between acoustic VTO measures (LTFDs & MFCCs)
  - strongest correlation with F3
  - weakest correlation with F4
- weaker correlations between LTFDs/MFCCs and VPA
  - but some strong correlations between individual formants and individual VPA settings
  - different representations of VTO

# 4.1 Discussion

- speaker discrimination performance of all VTO measures = very good
  - although inevitably all yield errors
- given correlations between LTFDs & MFCCs no reason to expect different errors
- **but...** VPA different representation of VTO?
  - potential improvement in performance of LTFDs/ MFCCs with the inclusion of auditory VPA

# **4.2 Conclusion**

- no perfect VTO measure given limitations of the supralaryngeal vocal tract as a biometric
- further limitations introduced in casework
  - channel mismatch/ background noise/ telephone transmission
  - benefit of using auditory measures which are more robust to some of these limitations
- future work: inclusion of laryngeal features

# Thanks! Questions?





**Research** Council

THE UNIVERSITY of York J P French  $\lambda$ ssociates Forensic speech and acoustics laboratory