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Abstract 

Pause fillers occur naturally during conversational speech, and 

have recently generated interest in their use for forensic 

applications. We extracted pause fillers from conversational 

speech from 54 speakers, including twins, whose voices are 

often perceptually similar. Overall 872 tokens of the sound [e:] 

were extracted (7-33 tokens per speaker), and objectively 

characterised using 315 acoustic measures. We used a Random 

Forest (RF) classifier and tested its performance using a leave-

one-sample-out scheme to obtain probabilistic estimates of 

binary class membership denoting whether a query token 

belongs to a speaker. We report results using the Receiver 

Operating Characteristic (ROC) curve, and computing the Area 

Under the Curve (AUC). When the RF was presented with at 

least 20 tokens in the training phase for each of the two classes, 

we observed AUC in the range 0.71-0.98. These findings have 

important implications in the potential of pause fillers as an 

additional objective tool in forensic speaker verification. 

1 Introduction 

Speaker identification, speaker recognition, and speaker 

verification form part of an established area which has attracted 

considerable research interest over the years [1,2]. Similar to 

other biometrics, such as fingerprints, the aim is to determine 

or verify the identity of a person on the basis of some unique 

properties. More recently, researchers have worked on the 

considerably more challenging scenario of forensic speaker 

comparison, which focuses on human speech or acoustic clues 

of some kind in a forensic setting [3,4]. One of the aims may 

be to identify whether a suspect’s voice matches some 

preceding voice recording that may be available such as 

ransom demand or bomb threat. 

 In many applications, speech is recorded under highly 

controlled acoustic conditions, with the option to repeat 

recordings if they are not of sufficiently good quality. For 

example, clinical speech assessment often takes place in an 

anechoic chamber to prevent external noise from distorting the 

signal, and uses high quality microphones [5]. Moreover, there 

is control over the speech activity, such as requiring speakers 

to read pre-specified sentences aloud, repeat phrases with 

linguistically meaningful units, or sustain vowels [5,6]. In a 

forensic context, recordings will almost certainly be recorded 

over the phone, which distorts speech signals due to bandwidth 

limitations; therefore, there are many more pragmatic 

considerations compared to controlled laboratory conditions.  

 Of particular interest to forensics is the study of twins, 

because they tend to exhibit very similar biometrics [7]. 

Monozygotic (MZ) twins present very similar anatomical 

characteristics, which are also marked on their voices. 

Similarly, same-gender DiZygotic (DZ) twins may have 

similar voices, although they share on average half their 

genetic information. Distinguishing their voices is difficult; 

research on twins is therefore worth exploring for forensic 

purposes [8]. 

 Processing casual conversational speech even when high 

quality data is available may be challenging due to the lack of 

any standardization, which is the reason why in clinical settings 

sustained vowels are typically used [5]. However, natural 

conversational speech comprises a number of disfluencies and 

hesitations such as uh and um, which are often observed when 

speakers attempt to remember something or to form coherent 

sentences, for example. These sounds are known as pause 

fillers, and research has demonstrated there are personal 

variants people favor, suggesting they could be used to 

distinguish speakers [9]. There are different pause fillers 

depending on the language, region, or even generation of 

speakers; the most commonly used pause filler amongst 

speakers in Spain is the sustained “ehh”, phonetically denoted 

as [eː] [10]. Recent research work has made an exciting link: 

pause fillers exhibit similar characteristics to (short) sustained 

vowels (relatively constant amplitude and frequency) [10], 

suggesting that research findings on sustained vowels might be 

applicable in the setting of processing pause fillers. 

 The fundamental frequency (F0) is considered to be the 

single most important characteristic of speech [5], and it is 

critical to estimate it accurately in diverse applications [5,11]. 

Although the concept of F0 is intuitively simple to understand 

as the dominating frequency in the signal, Roark has made a 

compelling case that there is no simple definition of F0 beyond 

Please cite this study as: A. Tsanas, E. San Segundo, P. Gomez-Vilda: “Exploring pause fillers in conversational speech for 

forensice phonetics: findings in a Spanish cohort including twins”, 8th International Conference on Pattern Recognition 

Systems, 11-13 July 2017, Madrid, Spain 

mailto:Athanasios.Tsanas@ed.ac.uk
mailto:tsanas@maths.ox.ac.uk


a single period and demonstrated that small changes in the 

hyper-parameters of F0 estimation algorithms often have large 

effects on the results [12]. Talkin provided an excellent 

summary of the objective difficulties in accurately estimating 

F0 in practice, emphasizing it is time-varying potentially 

widely over short lengths of time and the presence of 

harmonics [13]. It is difficult to conclusively decide on the best 

F0 estimation algorithm, and probably there is not a single best 

approach for all applications [13]. Commonly used algorithms 

for F0 estimation such as Praat [14], for example, rely on 

simple-to-use mathematical tools (auto-correlation), implicitly 

making strong assumptions regarding the stationarity of the 

speech signal which are violated in practice [5]. A recent study 

has thoroughly investigated 10 widely used F0 estimation 

algorithms in the sustained vowel /a/ setting using two speech 

databases and including analysis on degraded, telephone-

quality signals [15]. It was reported that the Nearly-Defect-

Free (NDF) [16] and the Sawtooth Waveform Inspired Pitch 

Estimator (SWIPE) [17] performed considerably better 

compared to some widely used competing F0 estimation 

algorithms; moreover, an adaptive framework combining the 

outputs of multiple F0 estimation algorithms could improve 

further the accuracy of estimating F0 [15]. Here, we use these 

findings to inform the processing of the pause fillers, focusing 

on understanding the time course of the F0 values for the 

duration of the signal (typically referred to as F0 contour).  

 The aims of this study were to: (a) verify the potential of 

using pause fillers in speaker verification using a more rigorous 

supervised learning setup compared to our recent previous 

study [10], and (b) investigate the required conditions which 

would enable accurate results to be achieved in this setting.  

2 Data 

We used the data previously described in San Segundo [10,18]. 

The dataset comprises 54 male native speakers of standard 

peninsular Spanish, aged 18-52, 24 of whom were MZ twins, 

10 were DZ twins, 8 brothers and 12 unrelated speakers. The 

participants’ health status was screened at the time of the 

recordings by standard health questionnaires. 

 All recording sessions were completed in the Phonetics 

Laboratory of the Consejo Superior de Investigaciones 

Científicas (CSIC) in Madrid. We used similar recording 

settings to those used in relevant studies in forensic phonetics 

by other research groups [19,20].  Each speaker was recorded 

on two timely distinct periods (2-4 weeks apart) to account for 

and assess intra-speaker variability. Participants were required 

to come in pairs for the recording sessions because several 

speaking tasks required collaborative exercises: twins came 

together, and other speakers joined with a friend/colleague, or 

their brother. Although several different speaking tasks were 

used, here we focus only on one of the speaking tasks: informal 

interview between a speaker and an experienced interviewer 

(E.S.S.) who stimulated a speaking style similar to those 

observed in forensic recordings. The interview lasted 

approximately 10 minutes and was carried over telephone to 

simulate realistic forensic conditions. The recordings were 

obtained using high-quality omnidirectional microphones, 

sampled at 44.1 kHz with 16-bit resolution. To better 

approximate a more realistic setting in a forensic setting, the 

voice signal was low-pass filtered at 3.4 kHz, high-pass filtered 

at 300 Hz, and down-sampled to 8 kHz. The interviewer 

elicited responses which required remembering past events, 

thus probing for hesitations which in practice lead to pause 

fillers during casual discussion. We confirmed that pause 

fillers typically took the phonetic form of a long [e]. 

3 Methods 

The methodology used in this study comprises the extraction 

of pause fillers from conversational speech, the F0 estimation 

as an integral speech signal processing component, and finally 

the characterization of each signal by applying signal 

processing algorithms to extract acoustic measures. 

3.1 Extracting pause fillers from conversational speech 

We manually located and extracted tokens in each of the two 

recording sessions for each study participant. For each 

recorded session for each participant, 7 – 33 tokens of [e:] were 

extracted, with a mean duration of about 200 milliseconds. 

Ultimately, this led to the extraction of 880 tokens for all 54 

participants. We excluded eights tokens which were too short; 

therefore, we used 872 tokens. 

3.2 F0 estimation 

We used the NDF algorithm to extract F0 [16], based on our 

previous findings in the analysis of sustained vowels [15]. We 

have found that particularly for short signals, NDF performed 

extremely well. NDF uses a fusion approach from both time-

domain and frequency-domain-based instantaneous F0 

candidates to determine the final F0 estimates. We refer to 

Kawahara et al. [16] for further algorithmic details. We 

computed F0 estimates every 1 millisecond for each signal, so 

for the average pause filler of 200 milliseconds we obtained a 

vector comprised of 200 successive F0 estimates, the F0 

contour. This is a critical pre-processing step, and the F0 

contour is used by many the acoustic measured described next. 

3.3 Extracting additional acoustic measures 

We have used the Voice Analysis Toolbox [21-23] to compute 

the acoustic measures (henceforth features) in this study. This 

toolbox was originally developed for processing sustained 

vowel /a/ phonations, but the similarity of the pause fillers with 

sustained vowels [10] suggests that these acoustic measures 

may be well adapted in this setting.  

 As indicated previously, many of the computed features 

rely on the accurate estimation of the F0 contour. These include 

the jitter variants, which quantify instabilities in F0. Similarly, 

we have computed F0 differences compared to normative data, 

as well as general F0-based statistics as part of the F0-related 

measures. The F0 contour was also used as the input signal in 

a wavelet decomposition scheme, which is a generic time-

series approach that was previously shown to work very well 

in a related application [22]. Other features included the 

shimmer variants, i.e. amplitude perturbations to quantify 

whether the speaker retains a relatively stable volume in the 



pause filler. Many of the other families of acoustic measures 

fall under the umbrella concept of signal to noise ratio. Finally, 

we have computed the 42 Mel Frequency Cepstral Coefficients 

(MFCCs) using the VoiceBox by Brookes [24]. MFCCs are 

widely used as the standard benchmark in speaker recognition 

applications [2].  

 Overall, we have characterised each token using 315 

features, thus giving rise to a design matrix of 872×315. The 

design matrix contained no missing entries. Table 1 

summarizes all the features used in the study. 

 

 

Table 1: Summary of computed features 

Feature Description Number 

Jitter variants 
Fundamental frequency 

perturbations 

30 

F0-related 

measures 

F0-based statistics and 

comparisons against 

normative data 

9 

Wavelet-based 

measures 

Wavelet decomposition 

methods of F0 
182 

Glottal quotient Vocal fold cycle variability 3 

Recurrence 

Period Density 

Entropy (RPDE) 

Uncertainty in F0 

estimation compared to 

normative data 

1 

Pitch Period 

Entropy (PPE) 

Quantifying variability in 

F0 compared to normative 

data 

1 

Detrended 

Fluctuation 

Analysis (DFA) 

Stochastic self-similarity of 

turbulent noise 1 

Shimmer variants Amplitude perturbations 21 

Harmonics to 

Noise Ratio 

Signal to noise ratio using 

autocorrelation 

4 

Glottal to noise 

excitation (GNE) 

Noise synchronization in 

different frequency bands  
6 

Vocal Fold 

Excitation Ratio 

(VFER) 

Noise synchronization in 

different frequency bands 9 

Empirical Mode 

Decomposition 

Excitation Ratio 

(EMD-ER) 

Decomposing the signal in 

multiple time series using 

EMD and quantifying 

energy and entropy   

6 

Mel Frequency 

Cepstral 

Coefficients 

(MFCC) 

Amplitude and spectral 

fluctuations 
42 

3.4 Statistical analysis, mapping, and model validation 

We computed the correlation coefficients between each feature 

and the binary outcome (samples from the same subject versus 

samples from the remaining 53 subjects); the process was 

repeated iteratively for each of the 54 subjects in the study. We 

used the standard rule of thumb that statistical correlations with 

a magnitude greater than 0.3 are statistically strong [25,26]. 

 Subsequently, we used a standard supervised learning 

setup, employing a Random Forest (RF) classifier [27]. RF is 

a powerful tree-based ensemble approach, which has been 

described as one of the best off-the-shelf classification schemes 

[28]. In short, RF is comprised of multiple weak learners, the 

decision trees, each of which casts a vote on the class of a query 

sample. Aggregating the voting from all trees gives rise to the 

probabilistic estimate of class membership for each query 

sample. As an integral part of the tree-growing process, RF also 

provides an estimate of the importance of the features, 

henceforth referred to as RF importance scores, thus providing 

tentative insight into the characteristics which contribute most 

towards correctly determining class membership. In all cases, 

we focused on binary classification: in the practical forensic 

phonetics perspective, this would be the equivalent of testing 

whether the query sample belongs to a certain speaker, versus 

the alternative that it belongs to some other speaker. 

 Due to the limited number of samples, we used the leave-

one-sample-out validation scheme: we trained the model using 

the 𝑁 − 1 samples (871 tokens), and computed its probabilistic 

performance denoting class membership on the left-out token. 

The process was repeated for all tokens in the dataset. We 

report results using the Receiver Operating Characteristic 

(ROC) curve, and computing the Area Under the Curve (AUC) 

approach: essentially this is a convenient metric to report in 

binary classification settings. ROC curves provide a compact 

visual impression of the trade-off between sensitivity (true 

positive rate, i.e. correct verification that the token belongs to  

the speaker investigated) and specificity (true negative rate, i.e. 

correctly identifying that the token belongs to a different 

speaker). The cut-off threshold can be adaptively set by the 

user depending on the trade-off they want to achieve. ROC 

curves and AUC are commonly used as performance metrics 

in binary classification settings reporting model accuracy 

[28,29]. In all cases, we only report the out-of-sample results, 

i.e. the results on the tokens not used in the training phase of 

the classification. 

4 Results 

Figure 1 provides a visual impression of the absolute values of 

the correlation coefficients. We observe that some correlation 

coefficients indicate statistically strong associations (|𝑅| >
0.3), but there is no unique feature that is strongly correlated 

with the outcome for all subjects. 

 The computation of correlation coefficients provides an 

indication regarding how difficult the classification task is. The 

RF classifier fuses the information content from the features to 

form rules so that the tokens can be probabilistically accurately 

assigned to the correct class membership. Following standard 

supervised learning rules of thumb, a minimum number of 20 

samples should be ideally available for each class [28]. Here, 

we have noted that for some participants there are fewer tokens 

to work on; therefore, the classification task is objectively more 

difficult to provide good results. Figure 2 presents the ROC 

curve for the speaker with the greatest number of extracted 

pause fillers [eː] (33 tokens). We observe that the AUC for this 

speaker is 0.93, indicating that we obtain an excellent trade-off 

between sensitivity and specificity. 

 Next, we repeated the statistical mapping process with the 

RF for all 54 speakers for completeness. It is well established 

that a minimum number of training samples (empirically 20-



25) is required to maximize the probability that a classifier 

would correctly differentiate classes [28]. Unfortunately, for 

many speakers there are relatively few tokens available, which 

hinders the statistical power of the supervised learning setup. 

 

 

 

Fig. 1: Visual presentation of the absolute correlation 

coefficients for the features used in the study, across all 54 

subjects. The binary response investigated was the feature 

values to identify the 𝑗𝑡ℎ subject versus the remaining 53 

subjects. We remark that some univariate correlations are 

statistically strong (|𝑅| > 0.3), but there is no unique feature 

that stands out consistently to identify a subject. 

  

 

 

 

Fig. 2: Indicative Receiver Operating Characteristic (ROC) 

curve for the speaker with the greatest number of extracted 

pause fillers [eː] (33 tokens) from the two interview sessions 

with an experienced interviewer. 

 

 Figure 3 provides a summary of the AUC computed for 

each speaker as a function of the number of extracted tokens; 

we have also noted whether the speaker was a MZ or DZ twin, 

or if the tokens belonged to brothers or unrelated speakers. As 

expected, there is a clear trend for the classification setting to 

be more successful when having a minimum number of 

samples. Using the rule of thumb that at least 20 samples 

should be available for a supervised learning classification 

setup, we note that the AUC varies between 0.71-0.98. 

Unfortunately, the low number of speakers for whom more 

than 20 tokens is available does not allow further investigation 

on establishing whether twins are considerably more difficult 

to be probabilistically correctly detected.  

 

 

 

Fig. 3: Presenting the AUC as a function of the number of 

tokens used for each participant. MZ: MonoZygotic twins, DZ: 

DiZygotic twins, B: Brother, US: Unrelated Speaker. 

 

 Overall, the AUC findings suggest that important 

information is contained in pause fillers, which can lead to 

reasonably accurate results. As part of the RF computation 

process, we have also inspected the RF importance scores for 

the computations on the 54 speakers. There was no discernible 

pattern on some features having consistently high importance 

scores across all developed RF models. 

5 Discussion 

We investigated the potential of using pause fillers extracted 

from conversational speech for forensic speaker verification. 

We built upon our recent previous study’s findings [10] by 

employing a supervised learning setup and applying a more 

rigorous validation process. We found that when provided with 

a sufficiently large number of tokens (20) for the training of a 

robust RF classifier, AUC results between 0.71-0.98 could be 

reached. These results further support previous explorations 

and improve upon results reported on this dataset [10,30,31], 

by using a principled supervised learning framework. 



 Frequency-related patterns are in general more robust than 

amplitude patterns which are sensitive to microphone 

placement, and hence more difficult to control in practical 

settings [5,6]. F0 estimation is often used as a precursor to the 

computation of more advanced acoustic measures 

[5,6,21,22,32]. We had previously shown that SWIPE and 

NDF are probably the best known F0 estimation algorithms for 

the sustained vowel /a/ [15]; since pause fillers are 

phenomenologically like sustained vowels [10], our conjecture 

was that these two F0 estimation algorithms should be very 

accurate in the present study’s setting. We used NDF because 

in our experience it works better on short signals [15]. 

Nevertheless, future studies will need to verify this hypothesis 

by simultaneously obtaining an external objective measure of 

F0 using electroglottography during conversational speech, 

and focusing on the pause filler segments. Moreover, future 

work on pause fillers should validate previous findings where 

an information-fusion based F0 ensemble in sustained vowels 

performed even better than NDF [15]. 

 We have relied on the inherent strength of the RF classifier 

to mitigate the well-known problem of the curse of 

dimensionality [33]. This refers to the insufficient population 

of the feature space with limited data, and hence calls for the 

use of techniques to reduce the size of the design matrix by 

selecting a subset of features, or using manifold embedding 

techniques to transform the feature space [33]. RF are generally 

very robust against the inclusion of redundant and noisy 

features, although there are key insights to be obtained by 

determining a compact feature subset, in terms of its 

interpretability, as can be seen in related applications [34,35]. 

There were no features which were consistently ranked with 

the highest importance scores for the different RF models 

developed; this could indicate the presence of multiple Markov 

blankets, or more likely reflect the limited number of tokens 

comprising one of the classes in this highly unbalanced 

problem. This topic is an active area of research in machine 

learning, and it needs to be further explored in this particular 

application to gain further insight. 

 The supervised learning scheme used in this study falls 

under the remit of speaker verification: given a token, we 

probabilistically assessed whether this token would belong to 

a certain speaker or not. We remark this is a considerably 

simpler problem compared to speaker recognition, where 

potentially a token could be used to identify a person out of a 

large pool of candidates. For the forensic phonetic application 

investigated here this is a promising first step which is 

meaningful in practice. For example, pause fillers could be 

extracted from a query (unknown) voice sample which may be 

available from ransom demand from the perpetrator; also an 

experienced interviewer may be able to elicit pause fillers 

during conversational speech with a suspect, which would be 

used to compare against the query sample and probabilistically 

determine whether the suspect and the perpetrator are the same 

person. In future work we aim to investigate how the present 

study’s findings could be generalized across wider cohorts and 

larger sample sizes, and perhaps also tackle this problem from 

a more general, speaker recognition perspective. 

 The number of samples used in this study was a major 

limiting factor in doing full-scale comprehensive supervised 

learning explorations: there were few speakers with more than 

20 extracted tokens. Nevertheless, we demonstrated that 

promising findings could be delivered even under these 

objective constraints. We envisage that in a practical setting 

longer-term interviews would be needed to elicit a greater 

number of pause fillers. Although there were four different 

groups represented in the studied cohort (MZ twins, DZ twins, 

brothers, unrelated speakers), the number of speakers in each 

group does not provide sufficient statistical power to enable 

direct group comparisons in a principled supervised learning 

setup. Moreover, this study only focused on a group of male 

Spanish native speakers; these findings would need to be 

verified in other cohorts including females and speakers with 

different native languages. 

 The findings reported in this study support the argument 

that pause fillers contain useful information from a forensic 

perspective. It is likely that combining information extracted 

from pause fillers, continuous speech, and additional clues 

which may be available in a forensic setting, would offer a 

more comprehensive framework upon which better-informed, 

accurate decision could be made. 
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