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Abstract 
Semi-automatic systems based on traditional linguistic-
phonetic features are increasingly being used for forensic voice 
comparison (FVC) casework. In this paper, we examine the 
stability of the output of a semi-automatic system, based on the 
long-term formant distributions (LTFDs) of F1, F2, and F3, as 
the channel quality of the input recordings decreases. Cross-
validated, calibrated GMM-UBM log likelihood-ratios (LLRs) 
were computed for 97 Standard Southern British English 
speakers under four conditions. In each condition the same 
speech material was used, but the technical properties of the 
recordings changed (high quality studio recording, landline 
telephone recording, high bit-rate GSM mobile telephone 
recording and low bit-rate GSM mobile telephone recording). 
Equal error rate (EER) and the log LR cost function (Cllr) were 
compared across conditions. System validity was found to 
decrease with poorer technical quality, with the largest 
differences in EER (21.66%) and Cllr (0.46) found between the 
studio and the low bit-rate GSM conditions. However, 
importantly, performance for individual speakers was affected 
differently by channel quality. Speakers that produced stronger 
evidence overall were found to be more variable. Mean F3 was 
also found to be a predictor of LLR variability, however no 
effects were found based on speakers’ voice quality profiles. 
Index Terms: forensic voice comparison, semi-automatic 
speaker recognition, long term formant distributions, validity, 
biometric menagerie 

1. Introduction 
When presenting evidence to the courts, it is vital that forensic 
experts are able to explain their methods and procedures in an 
accessible way, such that they can be understood by lay people 
(i.e. jurors, judges and lawyers). This is essential if courts are 
to make reliable, informed, evidence-based decisions about the 
innocence or guilt of the accused. This issue is pertinent for 
forensic voice comparison (FVC) evidence, particularly when 
based on automatic speaker recognition (ASR) systems that can 
be perceived by the courts to be black boxes (see [1]). In many 
jurisdictions, experts continue to use linguistic-phonetic 
methods of analysis in FVC cases. A key benefit of analysing 
linguistic-phonetic features in FVC, and especially vowel 
formant frequencies, is that there is a mapping, albeit 
sometimes a non-linear one, between articulation and acoustic 
output [2,3]. They are also based on decades of well-understood 
and uncontroversial linguistic theory. 

With these issues in mind, there has been an increasing 
focus on the use of semi-automatic systems (SASR) in FVC, 

reflected in the inclusion of SASR in the ENFSI methodological 
guidelines for best practice in 2015 [4]. SASR integrates 
linguistic and automatic methods: it combines (semi-)manual 
feature extraction (in contrast to automatic feature extraction, 
as in ASR systems), typically of formant frequencies (long term 
formant distributions; LTFDs), and automatic modelling, 
scoring and evaluation (as in normal ASRs). A growing body 
of research has shown that SASR based on LTFDs can be of 
considerable value. [5] reported an equal error rate (EER) of 
4.14% based on F1, F2, F3, and F4 frequency values extracted 
from contemporaneous high quality studio recordings of British 
English speakers. [6] found comparable results for high quality 
studio recordings of German, with EERs ranging from 3% to 
10.5%. Performance with more forensically realistic mobile-
phone transmitted recordings has been shown to be slightly 
poorer, with [7] reporting an EER of between 4% and 18% 
depending on the input features and the number of Gaussians 
used to model those features. 

This previous work has largely focused on matched (and 
typically good quality) technical conditions across suspect and 
offender samples. Yet mismatched conditions are the norm in 
forensic casework. For the majority of cases in the UK, the 
suspect sample is a relatively good quality recording of a police 
interview, while there can be considerable variability in 
offender samples (e.g. landline or mobile telephone recordings 
of varying qualities). Further, as with many studies in FVC and 
speaker recognition more generally, the focus of previous work 
on SASR has typically been on overall system performance (i.e. 
error rates). However, voices are complex and 
multidimensional. Speakers differ from each other as a result of 
a very wide range of features. Even if a system has very good 
validity overall, it may not perform particularly well for the 
specific evidential comparison in an individual case. In order to 
bridge the gap between research and casework, it is essential 
that we understand more about how individual speakers behave 
within our systems, rather than focusing exclusively on overall 
measures of validity. A small number of studies in FVC are 
beginning to address these issues (see [3,8]). 

In the present study we assess the performance of a LTFD-
based SASR system under matched and mismatched conditions 
as the quality of the offender recordings decreases – beginning 
with high quality recordings, and ending with more forensically 
relevant, low bit-rate GSM mobile recordings. A single set of 
speakers is tested in each condition using the same speech 
material. System performance (based on EER and Cllr) and the 
overall strength of evidence are analysed for each condition. 
The variability in output for individual test speakers is also 
evaluated over all conditions. Using the biometric menagerie 
and zooplots (see [9,10,11]) we identify which speakers are 
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more or less affected by the decrease in the channel quality of 
the offender sample, and attempt to identify the factors that may 
predict variability in performance. 

2. Method 

2.1. Materials 

Recordings were drawn from the DyViS corpus of young male 
standard southern British English speakers [12]. Of the 100 
available speakers, 97 were used, based on prior testing outlined 
in [13]. SASR testing was carried out under four different 
conditions according to the technical quality of the offender 
sample. Across all conditions, DyViS Task 1 was used as the 
suspect recording. Task 1 is a high quality, direct microphone 
recording (44.1kHz sampling rate, 16-bit depth), consisting of 
a mock police interview in which the participant is forced to lie 
about his involvement in a crime. DyViS Task 2 was used as 
the offender recording. Task 2 involves a telephone 
conversation between the participant and an accomplice to 
discuss a crime. The same speech material from Task 2 was 
used across conditions. Thus, there were no intrinsic, speaker-
based differences (e.g. Lombard speech) between the 
recordings. Rather, the recordings represent a decrease in 
technical quality, and are reflective of the variety of recordings 
analysed in real forensic casework. The four versions of the 
offender samples used in this study are described below.  

2.1.1. High quality (HQ) 

The DyViS corpus contains the near-end, direct microphone 
recordings of the Task 2 telephone conversations. The original 
44.1kHz recordings were downsampled to 10kHz.  

2.1.2. Landline telephone (TEL) 

The Task 2 speech was also recorded simultaneously at the far 
end of the telephone line, after transmission through a landline 
telephone network. The recordings had a sampling rate of 
44.1kHz but were downsampled to 10kHz for the purposes of 
this study. The landline telephone transmission automatically 
imposes bandpass filtering on the signal of approximately 
300Hz-3400Hz. 

2.1.3. GSM Mobile with high (MOBHQ) and low bit-rates 
(MOBLQ ) 

The high quality Task 2 recordings (§2.1.1) were manipulated 
to recreate 3G GSM mobile transmission – one of the most 
commonly used technologies for mobile transmission 
worldwide. Two sets of GSM recordings were created using 
different bit-rates to recreate high- and low-quality mobile 
transmission. The original recordings were initially resampled 
at a rate of 8kHz. The samples were then bandpass filtered, 
using a Hahn band filter, between 300Hz and 4000Hz to 
recreate typical mobile telephone filtering. The GSM AMR 
Speech Codec Platform [14] was used to apply the GSM codec 
to the recordings. This platform was used rather than passing 
the recordings through a real mobile network because the user 
has greater control over the settings. Using the AMR platform 
it is possible to change the bit-rate to a fixed value (whereas this 
is variable in the network depending on usage), as well as 
ensuring that frames are not dropped. The high quality GSM 
recordings were created using a bit-rate of 12.2kb/s (MOBHQ) 
while the low quality recordings used a bit-rate of 4.75kb/s 

(MOBLQ). Apart from bit-rate, the default settings were used 
(Version TS 26.073 with DTX disabled).  

2.2. Preparation of recordings 

The suspect recording (Task1) and the four versions of the 
offender recording (Task2) were prepared for analysis in the 
same way as described in §2.2 of [13]. This involved manual 
editing of recordings to remove non-speech sounds and 
overlapping speech, removal of sections containing clipping, 
voice activity detection to remove silences of greater than 
100ms (using the vadsohn function in the VOICEBOX toolkit 
[15]), and segmentation of the signal into consonants and 
vowels using stkCV [16]. The first 60 seconds of vowel 
material were used for formant extraction. For each of the four 
versions of the offender sample, exactly the same 60 seconds of 
vowel material were used, in order to ensure that output was 
directly comparable. 

2.3. Formant extraction 

The 60 second audio samples were divided in 20ms frames with 
10ms (50%) overlap between adjacent frames (6000 frames per 
sample). From each frame, F1, F2, and F3 frequencies and 
bandwidths were extracted using the Snack Sound Toolkit [17] 
with an LPC order of 12 and tracking four formants. Delta 
coefficients were also appended to the feature vector for each 
frame. Bandwidths and deltas were included in this SASR 
system as they have generally been shown to improve 
performance [6,13]. 

2.4. Conditions, system testing and evaluation 

In this study, the following four conditions were tested: 
(1) Sus: HQ (Task 1) vs. Off: HQ (Task 2) 
(2) Sus: HQ (Task 1) vs. Off: TEL (Task 2) 
(3) Sus: HQ (Task 1) vs. Off: MOBHQ (Task 2) 
(4) Sus: HQ (Task 1) vs. Off: MOBLQ (Task 2) 

For each condition, cross-validated same- (SS) and different-
speaker (DS) scores were computed for all 97 speakers using 
the GMM-UBM [18] approach with MAP adaptation of means, 
variances and weights. The cross-validation involved retraining 
the UBM for each comparison, such that data from the 
comparison speaker(s) were not included in the UBM.  In all 
cases, GMMs were fitted using 8 Gaussians based on 
performance in pre-testing. Score-level logistic regression 
calibration was then conducted, also using cross-validation 
[19]. Individual scores from each SS and DS comparison were 
calibrated individually, using a logistic regression model 
trained using all of the scores excluding those from 
comparisons involving the specific suspect and offender. This 
produced parallel sets of 97 SS and 4656 DS calibrated log10 
likelihood ratios (LLRs) per condition. System validity was 
assessed using EER and the log LR cost function (Cllr) [20]. 

2.5. Analysing individuals 

Individuals within the system were analysed in terms of the 
strength of the evidence they produced by calculating the means 
of LLRs for all of the SS and DS comparisons they were 
involved in across the four conditions. Variability in output was 
also assessed by calculating the standard deviations (SDs) of 
the SS and DS LLRs for each speaker across the four 
conditions. The behaviour of individual speakers is visualised 
in §3.2 using an adapted version of the zoo plot [10] described 
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in [11]. Zooplots are a way of visually representing different 
types of speakers within a system based on a typology called 
the biometric menagerie [9,10]: 
• Doves are the best individuals for a biometric system, 

producing strong positive SS LLRs and strong DS LLRs 
• Sheep are the majority of speakers who provide positive SS 

LLRs and negative DS LLRs, and thus well behaved 
• Worms are the worst individuals, producing strong negative 

SS and strong positive DS LLRs 
• Phantoms are successful at being separated from other 

speakers (strong negative DS LLRs) but struggle to be 
matched to themselves (strong negative SS LLRs) 

• Chameleons match well to themselves but are poorly 
separated from others. 

In §3.2, we fit multiple linear regression models to the SS and 
DS means and SDs. This is a means of testing which factors 
predict a speaker’s position and variability in the zoo space. The 
SS and DS means and SDs were also used as independent 
variables (when not used as the dependent variable). Mean 
formant values for each speaker based on pooled data for their 
HQ Task1 and Task2 samples were also used as independent 
variables – we predicted that low mean F1 would result in 
higher LLR variability as it is more susceptible to the 
‘telephone effect’ which artificially alters F1 values [21,22]. 
Auditory-based judgments of supralaryngeal and laryngeal 
voice quality (using data described in [13]) were also used as 
independent variables. The best model fit was identified using 
model comparison based on ANOVAs. A step-up approach was 
followed comparing the full model using all available 
predictors with combinations of fewer predictors.  

3. Results 

3.1. Overall performance 

Table 1 shows system validity (EER and Cllr) for the four 
conditions tested.  

Table 1: Overall validity (EER and Cllr) for the four 
conditions using F1, F2, and F3 frequencies, 

bandwidths and deltas as input 

 Suspect Offender EER (%) Cllr 
(1) HQ HQ 10.33 0.37 
(2) HQ TEL 25.95 0.73 
(3) HQ MOBHQ 31.71 0.81 
(4) HQ MOBLQ 31.99 0.83 

 
As expected, condition (1) produced the best overall 
performance, achieving an EER of 10.33% and Cllr of 0.37. This 
is unsurprising given that this was the only matched-channel 
condition and used high quality studio recordings for both 
suspect and offender samples. This performance is slightly 
lower than the 6.45% (EER) and 0.255 (Cllr) reported for the 
same corpus using F1, F2, F3 and F4 in [13]. This suggests that 
F4 provides useful speaker discriminatory information and 
should be utilised in SASR systems where the channel 
characteristics of the samples allow. 

A marked decrease in performance was found for the three 
mismatched conditions (2-4), relative to condition (1). Of these, 
condition (2) using the landline telephone offender sample 
produced the best validity (EER=25.95%, Cllr=0.73). The worst 

performance was found when using GSM mobile offender 
samples. Compared to condition (1), the performance of the 
GSM conditions was 20% worse in terms of EER and as much 
as 0.46 worse in terms of Cllr. Condition (4) using low bit-rate 
GSM offender samples produced the worst performance, 
although the difference between this and the high bit-rate GSM 
condition (3) was small. This suggests that SASR performance 
is relatively robust to GSM bit-rate. 

3.2. Individuals 

Figure 1 is a zooplot based on the SS and DS LLRs for all 97 
speakers across the four conditions. The white cross in the 
middle of the zooplot is the interquartile range (the middle 50% 
of the data) of the SS and DS LLRs for all speakers. Within this 
region lie the sheep of the biometric menagerie, who produce 
solid positive SS LLRs and negative DS LLRs. The four shaded 
boxes represent the first and fourth quartiles of the LLRs. 
Speakers within these regions are classified as phantoms, 
worms, chameleons or doves. Although Figure 1 is based on all 
the LLRs, only those speakers with the highest and lowest mean 
SS and DS LLRs and the highest and lowest standard deviations 
(SD) are plotted. The speaker numbers (DyViS numbers) are at 
the mean SS and DS values, while the ellipses represent ±1 SD. 
Figure 1 highlights the heterogeneity in individual performance 
within the SASR system, both in terms of the strength of 
evidence and the variability of output across conditions. For 
instance, speakers #23 and 25 show little sensitivity to variation 
in channel across the four conditions, producing LLRs with low 
SS and DS SDs. Speaker #78, however, is extremely variable 
in terms of both SS and DS comparisons. 

 
Figure 1: Zooplot showing the speakers with the 

highest and lowest SS and DS means (DyViS speaker 
numbers) and standard deviations (ellipses = ±1SD) 

Linear regression models fitted to identify the factors that 
predict a speaker’s position and variability within the zoo space 
revealed some significant effects. There was a significant 
correlation between SS and DS means (p<0.001). That is, 
speakers who produced strong positive SS LLRs generally also 
produced strong negative DS LLRs. Significant correlations 
were also found between means and SDs (p<0.001 for both SS 
and DS comparisons); the speakers producing the strongest 
LLRs were also the most variable. The only additional factor 
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predicting variability in LLRs was mean F3 (p<0.001). 
Speakers with higher mean F3 were found to have higher SDs 
for SS LLRs, but this was not significant for DS LLRs. No 
significant effects were found for F1 means or any voice quality 
features. 

4. Discussion 
Overall performance 
The results in §3.1 show that the effects of channel mismatch 
on SASR performance can be considerable. The decrease in 
performance from the matched to the mismatched conditions is 
the difference between a system that provides relatively good 
speaker discrimination and systems that capture very little 
speaker-specific information. Landline telephone transmission 
produced performance closest to that of the matched condition 
(although still 16% worse in terms of EER and 0.36 worse in 
terms of Cllr). The poorest performance was found using the 
GSM samples. However, variation in bit-rate did not appear to 
affect performance substantially. This finding is consistent with 
[23] who report very little difference in Cllr values for low, 
medium and high quality GSM samples using MFCCs extracted 
from vowel phonemes as input. Interestingly, using the same 
segmental MFCC input, [24] found that GSM coding can lead 
to improvements in performance in matched conditions over 
un-coded speech. This suggests that, in our case, the cause of 
the drop in performance is due predominantly to mismatch, 
rather than quality in and of itself – although formant values 
may be affected differently to MFCCs. 
 
Individuals 
Across the four conditions tested, individual speakers were 
found to display different behaviour. Some produced very 
strong evidence, others weak evidence. Certain individuals 
were more variable, indicating a sensitivity to channel 
variation, while others produced much more stable LLRs. 
Speakers who produced strong SS LLRs were found to also 
produce strong DS LLRs. Otherwise, no significant effects 
were found to predict a speaker’s position in the zoo space, and 
therefore classification in terms of the biometric menagerie. 
This suggests that neither mean F1, F2, and F3 values, nor any 
single auditorily-judged voice quality feature can be used to 
predict which speakers will perform well or badly within a 
formant-based SASR system. See [13] for a more systematic 
examination of the relationship between voice quality and 
LTFDs. 

Some interesting effects were found in terms of the 
sensitivity of individuals to channel variation. Speakers who 
produced stronger LLRs were also found to be more variable. 
This finding is consistent with [25], who argued that variability 
in LLRs is greater where offender data lie at the tails of 
distributions (be that the suspect distribution or background 
distribution), since small changes to those distributions can 
have a dramatic effect on the probability of the evidence. As 
with strength of evidence, voice quality features were not found 
to predict a speaker’s LLR variability. Although predicted, 
mean F1 did not correlate with LLR variability. Perhaps this is 
due to the fact that the samples from which the data were 
extracted contained a range of vowels, with values extending 
across the entire F1 range. This meant that speakers’ mean F1 
values were generally around 500Hz, and thus not especially 
susceptible to the ‘telephone effect’. Although not tested here, 
the issue may be more due to the phonemic make-up of the 

sample analysed. We might predict that samples containing 
more close vowels (with inherently low F1) would produce 
more variable LLRs, than samples with more open vowels (with 
inherently higher F1). 

 However, speakers with high mean F3 values were more 
variable in terms of their SS LLRs. This may be due to the fact 
that we used the same default settings for formant extraction in 
the Snack Toolkit [17], with an LPC order of 12 and tracking 
four formants, for all speakers across all conditions. Although 
choosing system-level settings is the approach that has been 
followed in previous studies [5,6,7], it may have led to 
measurement issues here. Speakers with inherently high F3 are 
more likely to have F4 values close to or outside the upper 
bandpass threshold for telephone transmission. This is likely to 
cause F3 measurement errors, despite the fact that F3 itself isn’t 
close to the bandpass threshold. This suggests, in line with [26], 
that it may be necessary to use channel- and speaker-specific 
(and possibly also vowel-specific) formant settings to help 
reduce the effect of channel mismatch and potentially improve 
overall system performance. This is something we intend to 
investigate in future work. 

5. Conclusion 
This paper has examined the effects of channel quality and 
mismatch on a formant-based SASR system. Mismatch was 
found to have an extremely detrimental effect on overall 
performance. We have also shown that there is considerable 
variability in individual behaviour both in terms of strength of 
evidence and sensitivity to the channel mismatch. The results 
highlight that analysis of individuals within forensic voice 
comparison (or indeed any biometric) systems should be an 
essential part of testing. It may also be that formant extraction 
settings need to be determined on a channel-by-channel and 
speaker-by-speaker basis. Only this information can allow the 
forensic scientist to understand whether their system is 
applicable to the voices under analysis in a given forensic case. 
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