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ABSTRACT 

 

This paper explores methods for characterising 

individual voices using different vocal tract output 

measures. Mel frequency cepstral coefficients 

(MFCCs), long-term formant distributions (LTFDs) 

and scores based on vocal profile analysis (VPA) of 

long-term supralaryngeal settings were extracted 

from the same corpus of recordings. Distances 

between speakers were calculated and used to test 

the interrelationships between the three output 

measures. Strong correlations were found between 

the MFCC and LTFD distances, while considerably 

weaker correlations were found between the acoustic 

measures and the VPA-based distances. This 

suggests that while the two measures of acoustic 

output provide similar information, the auditory 

VPA offers different information relevant for voice 

characterisation. In a forensic context this finding is 

important since it suggests that it may be possible to 

complement acoustic analysis with VPA to improve 

system performance.  
 

Keywords: individual speaker characterisation, forensic 

speaker comparison, vocal tract output measures. 

1. INTRODUCTION 

It is commonly assumed that individual voices are 

unique, shaped by a combination of the talker’s 

biology and socialisation. The speaker’s anatomy 

and physiology provide a basic architecture that is 

styled with acquired patterns of behaviour from the 

regional and social groups in which the speaker 

learns his language(s). The research presented here 

arises from a project on individual speaker 

characterisation entitled Voice and Identity – Source, 

Filter, Biometric. The broad aim of the project is to 

contribute to our understanding of the parameters on 

which speakers may systematically be differentiated 

from one another, and to propose ways in which 

analyses of those parameters may be combined into 

a battery of tests for forensic speaker comparison 

cases. The first phase of the work (reported here) 

concerns the investigation of the vocal tract as a 

potential source of information for individual 

speaker discrimination.  

The issue of individual speaker variation is of 

central concern in the forensic domain. In a typical 

forensic scenario, an expert is instructed to compare 

the voices in recordings of a known suspect and an 

unknown offender to aid the court in determining 

whether the suspect and offender are the same or 

different talker(s). Within the field of speech 

technology, automatic speaker recognition (ASR) 

systems attempt to capture the essential properties 

that distinguish one voice from another. However, 

the complexities of forensic cases cause difficulties 

for ASR systems (e.g. through channel mismatch, 

background noise). Although forensic casework 

worldwide is increasingly drawing on ASR, there is 

to our knowledge no jurisdiction in which speaker 

comparisons are undertaken purely by ASR unaided 

by human assessment to some extent [7,9]. Indeed, 

in many jurisdictions ASR is used very little, and the 

task is still largely handled by phoneticians applying 

analytic methods drawn from phonetics and 

linguistics [5]. Underlying many of the linguistic-

phonetic and ASR analyses of samples is the 

assumption that the vocal tract is a biometric: that is, 

the assumed uniqueness of the physical vocal tract 

can be modelled to separate individual voices from 

one another. While the assumption of vocal tract 

uniqueness is almost certainly sound, it is not 

possible to examine the vocal tract directly. Speech 

scientists analyse different measures of the acoustic 

output of the vocal tract – analogous to modelling 

the barrel of a gun from the sound of its shot. 

However, there has been little if any comparative 

assessment of the relative contribution of different 

output measures in speaker discrimination.  

In this paper we explore the value of vocal tract 

output in characterising individual voices. We 

compare the performance of different output 

measures, and their interrelationships. We focus on:  

 MFCCs (mel frequency cepstral coefficients) – 

commonly used features in ASR systems; 

 LTFDs (long-term formant distributions) – a 

global (i.e. non-segmental) analysis of the 

distributions of formants across a recording, 

which provides information about the vowel 

system and the vowel space, increasingly used in 

linguistic-phonetic forensic research [8]; 

 VPA (vocal profile analysis) – an auditory-based 

analysis of long term vocal settings and voice 

quality, developed largely for speech pathology 

analysis but also commonly used in mainstream 

phonetics [13].  



2. MATERIALS AND METHOD 

2.1. Materials 

Data for analysis were drawn from the DyViS 

corpus [14]. DyViS contains recordings of 100 male 

speakers of Standard Southern British English 

(SSBE), aged 18-25. We used data from Task 2: 

spontaneous speech elicited via a telephone 

conversation relating to a mock crime. For this 

study, high quality recordings of the target speaker 

at the near end of the telephone line were used (i.e. 

the signal was not transmitted via the telephone). 

2.2. Measures 

Three measures of vocal tract output were 

implemented: MFCCs, LTFDs and VPA. Each was 

used to calculate a distance measure and an 

identification score. The distance measure quantifies 

the degree of divergence between each pair of voice 

samples. The identification score assesses how well 

the features can be used to classify pairs of samples 

as ‘same speaker’ (SS) or ‘different speaker’ (DS). 

2.2.1. MFCC analysis 

MFCCs were extracted and processed using the 

commercial ASR system BATVOX (v4). Silences 

were removed automatically, leaving the speech-

active portion of each sample. The signal was then 

divided into frames using a 20ms Hamming window 

shifted at 10ms steps, resulting in 50% overlap 

between adjacent frames. From each frame, a feature 

vector of 20 MFCCs, 20 delta and 20 delta-delta 

coefficients was extracted and used to build a 

Gaussian Mixture Model (GMM: 1024 Gaussians) 

for each speaker. Kullback-Leibler (KL) divergences 

were calculated to quantify the distance between 

speaker models. 

2.2.2. LTFD analysis 

For the LTFD analysis, the recordings were first 

subjected to automatic vowel segmentation using 

StkCV software [2]. For consistency, these vowel-

only samples were reduced to 50 seconds net speech 

(the duration of the shortest sample after 

segmentation). Previous studies have also shown 

that LTFD models stabilise at around 50 seconds [8]. 

The samples were then analysed by the iCAbS 

formant tracker [12], logging measurements of the 

first four formants using a 25ms Gaussian-like 

window shifted at 5ms steps. The LTFDs were then 

fitted with a GMM (8 Gaussians) and KL distances 

again calculated between each speaker pair. Means 

(LTFMs) were also calculated for each formant. 

2.2.3. VPA analysis 

The voice samples were analysed using a modified 

version of the Edinburgh VPA [13], containing 28 

supralaryngeal dimensions with seven scalar points. 

The sixth author undertook the assessment. 

Divergence between speaker pairs was quantified as 

the Euclidean distance over the 28 dimensions. 

Distance scores ranged between 0 and 9. This range 

was, as expected, relatively narrow. Only a small 

subset of dimensions received scores above 1 for 

any speaker, as the purpose of the VPA is to capture 

habitual (i.e. long-term) departures from a well-

defined neutral setting. Scalar values of 4 and higher 

are restricted to speakers with voice/speech disorder, 

and were rarely if ever used in our analysis. 

Moreover, it is clear that VPA dimensions are not 

independent of one another. For instance, open and 

close jaw cannot occur simultaneously, and thus a 

score above 0 for one predicts 0 for another. 

2.3. Method 

2.3.1. Correlations 

 
Two sets of correlation tests were performed to 

explore the interrelationships between the three 

measures. Overall correlations were first analysed 

using the distances from each speaker pair. These 

correlations were then explored in more detail, as a 

means of understanding the relationship between the 

auditory-based VPA and the acoustic-based LTF 

analysis. Correlations were tested between the 

LTFMs for each individual formant and individual 

dimensions on the VPA scheme. These were then 

compared with predictions based on phonetic theory.  

2.3.2 Speaker discrimination 

Different techniques were used to evaluate speaker 

discriminatory performance for the three measures. 

For MFCCs and LTFDs likelihood ratios (LRs) [16] 

were computed for each SS (100) and DS (4900) 

pair. For the MFCC analysis, LRs were computed 

using BATVOX in identification mode by dividing 

each 4 minute sample in half in order to create 

‘suspect’ and ‘offender’ data. Testing in this way, 

rather than using non-contemporaneous samples, has 

been criticised as it risks failing to capture within-

speaker variation adequately [4]. However, in this 

experiment our aim was to explore the performance 

of the methods under optimal conditions. For the 

LTFD analysis, LRs were computed using the 

GMM-UBM approach [15] (10 Gaussians per 

model, LTFD1~4). GMMs were generated from the 

first half of the data for comparison with the 

measurements from the third and fourth quarters. 



Comparisons were performed with two sets of 50 

speakers. Two UBMs were built using the data from 

30 speakers not in each test set. LRs were 

transformed using a base-10 logarithm and used as a 

discriminant function whereby SS pairs generating a 

log LR of < 0 (‘miss’) and DS pairs generating a log 

LR of > 0 (‘false hit’) were classed as errors. 

A different approach was used to analyse the 

speaker discriminatory value of the VPA data, 

owing to the current lack of formulae for adequately 

computing LRs for discrete data [1,6]. Further, only 

one data set was available per speaker, meaning that 

SS comparisons were not possible. VPAs from 

different speaker pairs were compared to establish 

the number of exact (i.e. 1:1) matches. Given that 

100% agreement between raters on such a complex 

protocol is unlikely, a less stringent criterion was 

applied to establish close correspondences between 

pairs. Pairs differing by 2 scalar values or fewer 

were classified as ‘close’ matches. This was used as 

a discriminant function such that closely matching 

pairs were classed as false hits. 

3. RESULTS 

3.1. Interrelationships 

3.1.1. Overall interrelationships 

Table 1 summarises the overall correlations between 

the three vocal tract output measures based on 

distances between speakers. Table 1 reveals strong 

correlations between the two acoustic measures, 

LTFDs and MFCCs. The highest correlation 

coefficient (0.535) was found when comparing data 

from the first through third formants and the 

MFCCs, with a marginal decrease in r with the 

inclusion of F4. 

 
Table 1: Correlations of overall distance scores 

between speakers (N pairs = 4950) 

 

Comparison r p 

LTFD1~4 vs. MFCC 0.49 <0.01 

LTFD1~3 vs. MFCC 0.54 <0.01 

LTFD1~4 vs. VPA 0.12 <0.01 

MFCC vs. VPA 0.17 <0.01 

 

The relationships between the acoustic measures 

and the VPA-based distances were, however, 

considerably weaker. Although the MFCCs account 

for marginally more variance in the VPA data than 

the LTFDs, the fact that the correlation coefficients 

for both comparisons are so small suggests that the 

speaker-specific information encoded in the VPA 

data is essentially orthogonal to that in the LTFDs 

and MFCCs. The small value for p in these cases is 

considered an artefact of the large amount of data. 

3.1.2. Detailed interrelationships 

This section explores the correlations in Table 1 in 

more detail. Table 2 shows the correlations between 

the LTFD distances for each formant separately with 

the distances from the other two methods.  

 
Table 2: Correlations of distance scores between 

individual formants in LTFD analysis with MFCC 

and VPA methods (N pairs = 4950) 

 

Comparison MFCC 

r p 
VPA  

r 

 

p 

F1 0.265 <0.01 0.033 <0.05 

F2 0.298 <0.01 0.073 <0.01 

F3 0.439 <0.01 0.066 <0.01 

F4 0.130 <0.01 0.130 <0.01 

 

Moderately strong interrelationships were found 

between the individual formants and the MFCCs, 

with F3 providing the strongest relationship. Despite 

this, no comparison involving any individual 

formant provided a higher correlation coefficient 

than when combining formants. Further, consistent 

with the results in Table 1, the comparison involving 

F4 produced the weakest correlations. 

As in Table 1, the correlations between the 

formant distances and the VPA distances are 

considerably weaker. The highest correlation 

coefficient is found for F4, although even this is 

relatively small. In terms of speaker distances, 

therefore, the VPA data are considered independent 

of the formant distributions. Specific correlations 

between individual formants and VPA dimensions 

were analysed using the raw data. For this the 

LTFMs were used to reflect the central tendency, 

rather than information about the entire distribution. 

Table 3 summarises the strongest correlations. 

 
Table 3: Subset of strongest correlations between 

LTFMs for individual formants and VPA 

dimensions 

 

LTFM VPA dimension r p 

F1 pharyngeal expansion -0.239 <0.05 

 pharyngeal constriction 0.224 <0.05 

 raised larynx 0.373 <0.01 

 

F2 

 

 

F3 

F4 

lowered larynx 

fronted tongue body 

lowered larynx 

tense vocal tract 

tense vocal tract 

pharyngeal constriction 

raised larynx 

-0.226 

0.270 

-0.226 

0.197 

0.273 

-0.217 

-0.419 

<0.05 

<0.01 

<0.05 

<0.05 

<0.01 

<0.05 

<0.01 



Contrary to Tables 1 and 2, a number of 

correlations were found when using the raw LTFMs 

and comparing with individual vocal settings. Many 

of these correlations were also predicted. For 

example, the auditory impression of fronted and 

backed tongue body is largely the property of 

vowels, and thus was correctly predicted to correlate 

with F2 as the key acoustic reflex of tongue position 

on the front-back plane. Raised or lowered larynx 

settings were predicted to correlate with F1 as the 

articulatory process of shifting the larynx affects the 

length of the vocal tract.  

3.2. Speaker discrimination (identification) 

Table 4 displays the performance of each of the 

three measures in the speaker discrimination task. 

Results are shown for true rejection (DS correctly 

classified), false acceptance (DS wrongly classified 

as SS), true acceptance (SS correctly classified), and 

false rejection (SS wrongly classified as DS). 

 
Table 4: Speaker discrimination performance (%) 

 

 MFCC LTFD VPA 

(exact) 

VPA 

(close) 

True rejection 

False acceptance 

True acceptance 

False rejection 

97.1 

2.9 

100.0 

0.0 

97.4 

2.6 

94.0 

6.0 

99.5 

0.5 

- 

- 

87.9 

12.1 

- 

- 

 

All three methods performed relatively well. 

The best performing system in terms of DS 

classification was that based on MFCCs and LTFDs 

with 3% of DS pairs producing log LRs of greater 

than 0. DS discrimination was somewhat lower for 

the VPA data. On SS discrimination, the MFCC 

system outperformed the LTFDs with all 100 SS 

pairs generating LRs greater than 0, compared with 

94% for the LTFDs. This latter finding is in broad 

correspondence with previous research [3,10]. 

4. DISCUSSION 

Evaluation of the interrelationships between the 

three forms of vocal tract output revealed strong 

correlations between the LTFD and MFCC distance 

scores. This suggests that the two acoustic measures 

provide similar information in terms of categorising 

individual voices. However, weaker correlations 

were found between the acoustic measures and the 

auditory-based VPA, suggesting the latter provides 

different types of information about the 

supralaryngeal vocal tract. Interestingly, while some 

of the predicted correlations between formants and 

VPA settings are borne out in our data, this is only 

the case when considering the LTFMs as an 

indicator of central tendency. Thus, analysis of the 

entire distribution of the LTFs provides 

complementary information to the LTFMs 

themselves. 

The overall performance of each method was 

found to be very good, with errors of maximally 

12% (false acceptance for VPA ‘close’ matches). 

This indicates that the vocal tract itself provides a 

considerable amount of useful information for 

characterising individual voices. Inevitably, all 

measures yielded errors. However, given the results 

of the correlation tests in §3.1., there is reason to 

expect that the acoustic measures produce different 

errors from those produced by the auditory analysis. 

Therefore, consistent with [9], these results indicate 

that there is considerable potential for improving the 

already impressive speaker discriminatory power of 

long term acoustic measures by complementing 

these analyses with auditory-based VPA. 

5. CONCLUSION 

This study has assessed the value of the vocal tract 

as a biometric by considering the interrelationships 

between different output measures and their relative 

speaker discriminatory power. The weak 

correlations between acoustic and auditory measures 

indicate that the different measures encode different 

types of speaker-specific information. In future work 

we will therefore consider how to improve speaker 

discriminatory performance, beyond the levels 

reported here, by complementing long-term acoustic 

analysis with VPA. If there is any value in 

combining MFCC analysis with LTFDs, statistical 

compensation procedures that take account of the 

correlations would need to be implemented in order 

to avoid duplication of information and the resulting 

overestimation of the strength of the evidence [4]. 
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